

Three Quick Topics

Pi-hole
Windows Subsystem for Linux

CircuitPython

Connie Sieh & Dave Putz
Uniforum Chicago
January 21, 2020

Pi-hole

● The Pi-hole® is a DNS sinkhole that protects your devices from
unwanted content, without installing any client-side software

● It is set up as a DNS server that has a configurable blacklist of
sites

● When a DNS request is made to a listed site a fake IP address is
returned, which points to a small web server on the Pi-hole
system.

● Any requests made to the fake IP address just return a tiny blank
image.

● So, your web browser (or other software) thinks it has received
an ad, but just displays an empty space.

Pi-hole

● Prerequisites

– 512 MB Ram, 52MB disk space
– A supported operating system

● Raspbian
● Ubuntu
● Debian
● Fedora
● CentOS

– A static IP address for your network

Pi-hole

● Installation

– There are 3 methods available to install
● A one-step automated install using curl
● A git clone of the Pi-hole repository and running a script it

contains
● A manual download of the installer

The install will add any required packages that might be missing
and ask questions about some configuration options

– Time to install varies; on a slower wifi it took about 10 minutes
– Note that the installer will show a randomized admin password; you

will want to make a note of it (or use pihole -a -p to set a new one)

Pi-hole

● Post-Installation

– Once the install completes successfully Pi-hole will be up
and running

– To use it, just point the DNS server for any device to the
IP address of the Pi-hole system

● If you have control over a dhcp server being used you
can set the default DNS server to your Pi-hole

– Example for dhcpd.conf:
option domain-name-servers xxx.xxx.xxx.xxx

● Pi-hole also comes with a built-in dhcp server

Pi-hole

● Administration

– If you want to use the default blacklist, no more work is needed
– There is a web-based admin tool available at the Pi-hole IP

address
● xxx.xxx.xxx.xxx/admin

– You can get a graphical view of DNS queries – how many were
made, how many were blocked, how many clients, etc.

– There are many options available (such as disabling Pi-hole for
a short time so you can see those ads)

– You can add domains to the blacklist or whitelist
–

Pi-hole

● Demo Hardware

– Raspberry Pi Zero W
– Sandisk 32GB micro sd
– Raspbian Lite Stretch

● Wifi enabled
● USB serial “gadget” enabled

Pi-hole

● Demos

– Install Pi-hole
● wget -O basic-install.sh https://install.pi-hole.net
● sudo bash basic-install.sh

– Point client DNS to Pi-hole ipaddress
– Admin page
– Timing of a site with/without Pi-hole

● cnet.com
● espn.com

Pi-hole

● References and guides

– Pi-hole install guide - https://github.com/pi-hole/pi-hole/
#one-step-automated-install

– Raspbian download
https://www.raspberrypi.org/downloads/raspbian/

– A Raspberry Pi Zero W needs some setup to run with a
USB console
https://www.tal.org/tutorials/raspberry-pi-zero-usb-serial
-console

– Using Pi-hole with a VPN to provide remote access
https://docs.pi-hole.net/guides/vpn/overview/

https://www.raspberrypi.org/downloads/raspbian/
https://www.tal.org/tutorials/raspberry-pi-zero-usb-serial-console
https://www.tal.org/tutorials/raspberry-pi-zero-usb-serial-console

Windows Subsystem for Linux

● The Windows Subsystem for Linux (WSL) is a Windows 10
feature that enables you to run native Linux command line
tools directly on Windows, alongside your traditional
Windows desktop

History
– Installation
– Use

Limitations

Windows Subsystem for Linux

● HISTORY
● Microsoft initially tried to be “Unix-y” by providing a Posix

subsystem in Windows NT
● This was done to meet DoD Orange Book specs
● The POSIX subsystem supported POSIX.1 spec but

provided no shells or UNIX-like environment of any
kind.

● Eliminated in Windows XP and Windows Server 2003
● MS also bought a product named Interix which became a

core operating system component, rebranded as
“Subsystem for UNIX Applications” (SUA).

● Not much use or acceptance for either of these products

Windows Subsystem for Linux

● In Windows 7 Microsoft promoted the use of virtual machines to run
Linux distributions

– These have the same issues as all fully-virtualized environments
● Less efficient use of hardware
● Dedicated resources limit overall usage

● WSL was released for 64-bit Windows 10 (version 1607+)

– It lets you run unmodified Linux binaries directly on Windows 10
– Command line tools were the focus
– Provides a “translation” of Linux systems calls to Windows NT

kernel calls

Windows Subsystem for Linux
● INSTALL

– Via “enable optional feature” setup OR
– Via a Admin enabled Powershell
– Enable-WindowsOptionalFeature -Online -FeatureName Microsoft-Windows-Subsystem-Linux

● Some necessary software will download, and the WSL subsystem will be
enabled after you reboot.

● Install Linux Distro

– Current available distros are
● Ubuntu …
● Kali Linux
● Debian
● Alpine WSL
● SUSE …
● Pengwin ...
● Fedora Remix for WSL

– You can also download & install without Microsoft Store via curl
https://docs.microsoft.com/en-us/windows/wsl/install-manual

https://docs.microsoft.com/en-us/windows/wsl/install-manual

Windows Subsystem for Linux

● Install Linux Distro via Microsoft Store

– Select “get”
● Install Linux Distro via powershell

– “curl.exe -L -o ubuntu-1804.app
https://aka.ms/wsl-ubuntu-1804”

– Add-AppxPackage .\ubuntu-1804.appx

https://aka.ms/wsl-ubuntu-1804

Windows Subsystem for Linux

USE

– List WSL distro
● “wsl -l --all” # lists all wsl distros

– Start distro
● Ubuntu-1804 # starts wsl with specified distro
● “wsl -d Ubuntu-1804”
● Select Distro from Start Menu”

– Run linux commands from Windows
● “wsl <command>”
● Pipes and redirection works

Windows Subsystem for Linux

FILESYSTEM ACCESS

– Linux filesystem available in Windows
– Linux “/” filesystem available via “9P” filesystem (1903)

● https://devblogs.microsoft.com/commandline/whats-
new-for-wsl-in-windows-10-version-1903/

● “\\wsl$\<distro name>\”
– Windows “c:” available in Linux at

“/mnt/c/”
– DO NOT TOUCH APPDATA folder

● BAD things will happen

Windows Subsystem for Linux

● WSL 1 runs Linux binaries by partly implementing a Linux API compatibility layer in the
Windows kernel , thus some programs will not work because they need the missing
system calls

● Since a compatibility layer is used some operations can be slower than native Linux
such as disk reads/writes

● WSL 2 Announced May 2019 , First “test” release June 2019, Expected Release 20H1

● WSL 2 uses a Microsoft provided Linux kernel running in a lightweight VM to provide
better compatibility with native Linux installations

● Install WSL 2

– Enable the 'Virtual Machine Platform' optional component via a Admin enabled
Powershell

– “dism.exe /online /enable-feature /featurename:VirtualMachinePlatform /all /norestart”
– Set your distro version using a command line:

● “wsl --set-version <Distro> 2”

– Check the version for each distro:
● “wsl --list --verbose”

Windows Subsystem for Linux

● Demos

– WSL 1 Install
● Via Admin enabled Powershell

– Enable-WindowsOptionalFeature -Online -
FeatureName Microsoft-Windows-Subsystem-
Linux

– WSL Distro Install – Via Powershell
● curl.exe -L -o ubuntu-1804.app
● Add-AppxPackage .\ubuntu-1804.appx

Windows Subsystem for Linux

● Demos

– WSL Usage
● Microsoft Powershell

– “wsl ls”
– “wsl ls |> filenames”
– “cd \\wsl$\ubuntu-1804”
– dir

● Linux
– “ls”
– “explorer.exe”
– ‘notepad.exe”
– “cd /mnt/c”

–

Windows Subsystem for Linux

● Demos

– WSL 2 Install
● Via Admin enabled Powershell

– dism.exe /online
/enable-featur/featurename:VirtualMachinePlatform /all

● Restart Windows to enable
– Set your distro version using a command line:

– “wsl --set-version <Distro> 2”
● Check the version for each distro:

– “wsl --list –verbose”
– WSL 2 Usage

● “wsl <linux command> 1 # For wsl 1
● “wsl <linux command> 2 # for wsl 2

–

Windows Subsystem for Linux

● Demos

Build CircuitPython

● wsl --set-version ubuntu-1804 2
● “cd ~/git/circuitpython”
● “make clean”
● “time make”
● “wsl –set-version ubuntu-1804 1”
● “cd ~/git/circuitpython”
● “make clean”
● “time make”

Windows Subsystem for Linux

● Demo Hardware

– Dell E5440 – I5 43xx, 8GB DDR3, 500GB SSD
– Windows 10 1903 Education
– Hyper V

● Windows 10 Insiders 19035
– Needed for WSL 2
– Did not want to replace Windows 10 1903

Windows Subsystem for Linux

● References and Resources

– Manage and Configure WSL Distros
● https://docs.microsoft.com/en-us/windows/wsl/wsl-config

– Release Notes
● https://docs.microsoft.com/en-us/windows/wsl/release-notes

– Page with lots of WSL links
● https://github.com/sirredbeard/Awesome-WSL

– WSL Presentation by Mithun Shanbhag
● https://www.slideshare.net/mithunshanbhag/wsl-windows-subsytem-

for-linux
– Ubuntu WSL Page

● https://wiki.ubuntu.com/WSL
– Microsoft Provided WSL Linux Kernel

● https://github.com/microsoft/WSL2-Linux-Kernel

https://docs.microsoft.com/en-us/windows/wsl/release-notes
https://github.com/sirredbeard/Awesome-WSL
https://www.slideshare.net/mithunshanbhag/wsl-windows-subsytem-for-linux
https://www.slideshare.net/mithunshanbhag/wsl-windows-subsytem-for-linux
https://wiki.ubuntu.com/WSL

CircuitPython

CircuitPython is a Python interpreter that has
been implemented as the firmware on some

microprocessors. This allows a programmer to
develop and run microprocessor applications

without the need for external SDKs, compilers,
etc. Scripts are run directly by the Python

interpreter. We will cover the design philosophy
behind it, the community that supports it, and

enter and run some examples (live demo!)

CircuitPython

● History

– MicroPython was created in 2013 by Damien George
– Originally supported a Kickstarted STM32 ‘pyboard’
– His aim was to support standard CPython with as many

modules as possible.
– Constrained by memory sizes (256k of code space, 16k

of RAM)
– MicroPython has been expanded to other architectures

(ESP8266, ESP32, PIC, Unix, Windows, etc.)

CircuitPython

● History

– MicroPython was forked in 2017 by Adafruit to create
CircuitPython

– Originally done to support SAMD21 chips used by many Adafruit
boards

– Goal: One hardware API regardless of board or chip type
– Some non-standard Python code from MicroPython was

removed
– A uf2 bootloader was created to simplify getting code on the

board
– Both projects still share code back and forth

CircuitPython

● How it works

– Power-up default is to enter a REPL prompt state on the serial/usb
port (REPL = read-eval-print-loop; waiting for entry of Python code)

– A terminal emulator connected to the USB port allows interaction
with the system

– Python commands & scripts can be entered directly
– The device will also show up as a USB disk drive

● Access depends on which OS you are running
● Code, modules, audio & video files can be copied directly to the

CIRCUITPY drive
– Scripts named boot.py or main.py will be run automatically on

power-up (no REPL prompt)
– You can also run arbitrarily named scripts using a REPL command

CircuitPython

● How it works

– The most commonly used Python modules are
compiled into the core

– Many modules for specific hardware devices can be
installed separately

– CircuitPython modules have been ported to CPython
(i.e. Raspberry Pi, etc.) - the project is named ‘blinka’

● https://learn.adafruit.com/circuitpython-on-raspberryp
i-linux/installing-circuitpython-on-raspberry-pi

● https://learn.adafruit.com/neopixels-on-raspberry-pi?
view=all

https://learn.adafruit.com/circuitpython-on-raspberrypi-linux/installing-circuitpython-on-raspberry-pi
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux/installing-circuitpython-on-raspberry-pi
https://learn.adafruit.com/neopixels-on-raspberry-pi?view=all
https://learn.adafruit.com/neopixels-on-raspberry-pi?view=all

CircuitPython

● CircuitPython Community

– All the code is on github
● Core code at https://github.com/adafruit/circuitpython
● Library code at

https://github.com/adafruit/CircuitPython_Community _Bundle
– All are welcome to contribute; info can be found at:

https://github.com/adafruit/circuitpython/blob/master/
CONTRIBUTING.md

– Primary sources of contact/support
● https://adafru.it/discord
● https://forums.adafruit.com/viewforum.php?f=60

– There is a weekly developers call on discord – search for
#circuitpython

https://forums.adafruit.com/viewforum.php?f=60

CircuitPython

● Live Demos

– Demo 1 - booting up and using the REPL prompt
– Demo 2 - Writing a simple Python script and copying it

to the CIRCUITPY disk drive
– Demo 3 - Lighting up some LED’s on LED string
– Demo 4 - Sound level dependent LED
– Demo 5 – Lighting up some LED’s on LED string

running on a Raspberry Pi using “blinka” libraries

CircuitPython

● Demo Hardware

– Demo 1,2,3,4
● Adafruit Circuit Playground Express
● WS2811 50 LED String
● WS2812 10 LED

– Demo 5
● Raspberry Pi 3 B+
● WS2811 50 LED String
● Raspbian Buster

Presentation Materials

● This presentation and CircuitPython demo scripts are all
available on github at
https://github.com/siehputz/uniforum2020

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

